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A lattice ribbon is a connected sequence of plaquettes subject to certain self- 
avoidance conditions. The ribbon can be closed to form an object which is 
topologically either a cylinder or a M6bius band, depending on whether its sur- 
face is orientable or nonorientable. We describe a grand canonical Monte Carlo 
algorithm for generating a sample of these ribbons, prove that the associated 
Markov chain is ergodic, and present and discuss numerical results about the 
dimensions and entanglement complexity of the ribbons. 

KEY WORDS: Ribbon; lattice models; Monte Carlo algorithm; knotting and 
linking; entanglements. 

1. INTRODUCTION 

Self-avoiding walks have been studied for many years as a model of long- 
chain polymers in dilute solution in a good solvent: tl This model retains 
the two essential features of connectivity and excluded volume, and has 
become accepted as the simplest model which adequately describes this 
physical system. It has been modified in many ways. By converting the 
walk to a polygon one can investigate topological features such as 
knotting, ~21 and by adding a short-range attractive potential one can model 
the collapse transition from a coil to a ball at the theta temperature. ~3) 

Some polymer molecules appear in a duplex form in which one strand 
winds around the other. The classic example is DNA, 14' 5) but the phenom- 
enon also occurs in polysaccharides such as the carageenans. ~6) If the 
polymer is closed to form two intertwined rings, the rings can be linked as 
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well as knotted. This situation has been modeled as a ribbon, in which the 
two polymers are modeled as the two boundary curves of the ribbonJ 4~ 

In order to understand the asymptotic behavior (as the polymers 
become very long), we introduced t7~ a lattice ribbon model of such double- 
stranded molecules, where the ribbon is made up of a sequence of plaquettes 
(unit squares in the cubic lattice). The model is designed to retain the 
simplicity of the self-avoiding walk, while having the richness of the ribbon 
model. The model has the advantage that some of its properties can be 
established rigorously (using techniques borrowed from the theory of self- 
avoiding walks) and its discrete nature makes it particularly suitable for 
study by Monte Carlo techniques. Linking, twisting, and writhing are 
natural properties of the model, and it can be enhanced by adding fugacity 
terms to increase the extent of twisting or writhing. 

This paper is concerned with the basic Monte Carlo algorithm which 
we have developed and its application to the simplest situation: a closed 
ribbon with no added fugacities for twist or writhe. In Section 2 we 
define the model and introduce a Markov chain Monte Carlo algorithm. 
Section 3 is devoted to the reversibility and ergodicity properties of the 
Markov chain: In particular, we derive an invariant limit distribution by 
proving reversibility and irreducibility, conditional on the inclusion of a 
certain set of elementary transitions in the Markov chain. We also describe 
an algorithm for simulating closed ribbons whose axis is a fixed knot type. 
The implementation of the algorithm is described in Section 4, where par- 
ticular attention is paid to data structures. Numerical results are presented 
in Section 5. We compute autocorrelation times to study the correlations 
of the Markov chain, and compute the growth constant and entropic and 
metric exponents for ribbons. The metric exponent v is close to that of self- 
avoiding walks. We next turn our attention to the entanglement complexity 
of ribbons and compute the linking between boundary components and the 
writhe of the ribbon. We also consider the knot type of the boundary curve 
in nonorientable ribbons. The paper concludes in Section 6 with a few final 
observations and remarks. 

2. A MONTE CARLO ALGORITHM FOR LATTICE RIBBONS 

A unit square with vertices with integer coordinates is a plaquette in the 
cubic lattice Z ~. Two plaquettes are adjacent if they share exactly one edge. 
A closed ribbon is an ordered sequence of plaquettes { a0, ~l ..... ty._ l} such 
that: 

1. Two plaquettes i and j are incident on a common edge if and only 
i f ] i - j ] = l  o r n - 1 .  
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2. I f  two plaquettes are nonadjacent,  then they can share a vertex 
only if they are both  adjacent to the same plaquette. 

3. N o  more  than three plaquettes can be incident on the same vertex. 

If and edge e is the intersection of adjacent plaquettes (e = ai w a(;+l~ rood , ,  
for some i), then we call e a ribbon edge, otherwise it is a boundary edge. 
Observe that  r ibbon edges are incident on exactly two plaquettes, while 
boundary  edges are incident on only one plaquette. 

The intersection a , _  i) rood,, c~ a~ n a(g+ ~1 rood n is either empty  or con- 
sists of  exactly one vertex incident on the three plaquettes, for any i. If  it 
is empty,  then a~ is an ordinary plaquette, otherwise it is a corner plaquette. 
These cases are illustrated in Fig. 1. An ordinary plaquette has opposite 
edges on the boundary  of the ribbon, while a corner plaquette  has two 
adjacent edges on the boundary  of the ribbon, and one vertex incident on 
both  its nearest neighbors in the r ibbon (indicated by �9 in Fig. Ib), 

A r ibbon is open if its first and last plaquettes are not adjacent and 
have empty  intersection. The number  of  r ibbon edges incident on a pla- 
quette is its degree. In a closed r ibbon every plaquette has degree 2, but  in 
an open r ibbon the first and last plaquettes have degree 1, while all other 
plaquettes have degree 2. We write w,, for the number  of  open ribbons with 
n plaquettes, where two ribbons are considered distinct if they can not be 
superimposed by translation. Closed ribbons can be orientable (i.e., having 
two boundary  curves) or nonorientable (having only one boundary  curve). 
We write r,, for the number  of  closed ribbons with n plaquettes, and respec- 
tively r, ~ and r',i for the numbers  of  closed ribbons with n plaquettes which 
are orientable and nonorientable: clearly r,, = r, ~ + r,~. 

The number  of distinct open r ibbons grows exponentially fast with n, 
the number  of  plaquettes. The growth constant p measures the rate of 
exponential  growth, and it is defined by log p = limn ~ o~ n - ~ log w,, (this 
limit exists by concatenat ion arguments).  Moreover,  upper  and lower 
bounds may  be derived on p: 4 ~< p ~ 9. Similar techniques may  be used to 
prove the existence of a growth constant  for closed ribbons, and for orien- 
table and nonorientable r ibbons as well. In all three cases it is equal to p.{71 

(a) (b) 
Fig. 1. (a) An ordinary plaquette and (b) a corner plaquette, 
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If  an open (closed) ribbon is collapsed onto its centerline, then we find 
a self-avoiding walk (polygon) in a decorated cubic lattice. Hence, a ribbon 
should be in the same universality class as walks, and critical exponents for 
ribbons should be equal to those for walks. If R,~ is the mean square radius 
of gyration of an open or a closed ribbon with n plaquettes, then it is 
believed that 

R 2 ~ n 2v 

w,, ~ n y-  lp, (2.1) 

r n  ~ n ~ -  3 f l , ,  

where we expect v~0.588 for the metric exponent, and y~1.1615 and 
~,,,0.25 cs) for the entropic exponents. On the other hand, ribbons have 
more local structure than walks: in particular, the two boundary curves of 
a closed orientable ribbon may be linked. A theorem in differential 
geometry ~9-~tl decomposes the linking number L k  of these boundary curves 
into the twist Tw of one boundary about the centerline of the ribbon and 
writhe Wr of the centerline as 

Lk  = Tw + Wr (2.2) 

The knot type of the centerline of the ribbon as well as Tw, Wr, and L k  
are measures of entanglement of the ribbon. These data are known to be 
important in determining the physical complexity of DNAJ s" 12) 

A numerical method to simulate closed ribbons would be particularly 
useful in understanding the decomposition in Eq. (2.2). In Section 2.1 we 
describe a Monte Carlo algorithm for realizing a Markov chain defined 
on the set of closed ribbons at a fixed plaquette fugacity K in the grand 
canonical ensemble. The statistics of the realized ribbons is described by a 
generating function of the general form 

G~(K) = ~ r .K"n ~ (2.3) 

where x is an integer which will be determined by the particular implemen- 
tation of the algorithm, x has no physical meaning, but we can tune the 
distribution from which we sample by varying K and x, allowing us to focus 
the sampling on ribbons of different lengths (see Sections 4.1 and 5.3 for 
details). The fugacity is related to a chemical potential p of the plaquettes 
by K - - e  ". The algorithm will rely on two kinds of elementary transitions 
between states: the first is a local move, which changes a small number of 
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neighboring plaquettes locally, while the second kind is a global move, 
reminiscent of  "pivot" moves employed in the simulation of  polygons in the 
cubic lattice, t~3J 

2.1. Local E lementa ry  Transi t ions 

The local part of  the algorithm, which is a grand canonical implemen- 
tation (since it involves changing the number  of  plaquettes in the ribbon), 
uses local elementary transitions of  three different types. These are dubbed 
corner, ordinary, and double moves. We describe these in turn: 

Corner Moves. Let a = ai be a corner plaquette and let t /=  a . _  ~ mod n 

and r = a . +  ~1 rood,, be its neighboring plaquettes. Let �9 = t/c~ a c3 r. There 
are four edges incident on *: the two ribbon edges incident on a and II, and 
on a and r respectively, and two boundary  edges, one incident on 11 and 
the other incident on r. 

Remove a from the ribbon and select with uniform probability, by 
using, for example, rejection techniques, two of the four edges incident on 
�9 perpendicular to each other, and such that one is incident on r/ and the 
other is incident of  r. These selected edges will be the new ribbon edges; a 
plaquette is added back between them as illustrated in Fig. 2, and the 
resulting conformation is accepted as a newly proposed ribbon if it is a 
ribbon. If the resulting conformation is not a ribbon, then it is rejected, and 
the old ribbon is repeated in the realization of  the Markov chain. 

Ordinary Moves. Ordinary moves are executed on ordinary 
plaquettes in the ribbon, and they may involve length changes through the 
addition or substraction of plaquettes from the ribbon. There are two 
flavors of  these moves: a parallel shift and a 90 ~ rotation. Let a be an 
ordinary plaquette, with neighbors r/ and r and second nearest neighbors 
~I' and r '  (q' on the side of  r / and  3' on the side of r) in the ribbon. 

A parallel shift is attempted on a by translating a parallel to itself a 
unit distance in the lattice through one of  its boundary  edges. Label the 

..~ 

|.." 

Fig. 2. The comer move can be carried out by removing a and by putting it back between 
q and r. 
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translated plaquette a'. There are three cases. Case (1): Suppose that a' is 
disjoint with r/' and r'. Then the ribbon is disconnected. It can be recon- 
nected by adding plaquettes between the old ribbon edges of a' and a 
boundary edge on each of t I and r, as illustrated in Fig. 3, case (1). Then 
r/ and r become new second nearest neighbor plaquettes to a', and the 
number of plaquettes in the new conformation has increased by two. If the 
old ribbon edges on a' are incident on one boundary edge from each of r/' 
and 3', then we have case (2), which is the inverse of case (1). These 
boundary edges now become ribbon edges, and r/and r are removed from 
the ribbon. The transition is illustrated in Fig. 3 by reading case (1) from 
right to left. The number of plaquettes in the ribbon is reduced by two. 
Case (3) in the parallel shift move occurs when a' is incident on one 
boundary edge of one of its second nearest neighbors, say r', and disjoint 
with the other (17). Remove r and add a plaquette incident on the old 
ribbon edge of a' and with a boundary edge of r/. This move is length 
preserving and illustrated in Fig. 3. It is its own inverse move. 

A 90 ~ rotation is attempted by selecting an ordinary plaquette and 
rotating it randomly (either in a positive or in a negative sense) through 
90 ~ about one of its boundary edges. The possible resulting changes in con- 
formation depend on the local structure of the ribbon, and these are 
illustrated in Fig. 4. 

Cases  (1)  a n d  (2)  

Case  (3) 

Fig. 3. The possible outcomes of the parallel shift. 
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Cases (1) and (2) 
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�9 ) 

Case (3) 

Cases (4) mad (5) 

Case (6) 

Fig. 4. Possible outcomes in the 90 ~ rotation. 

The cases in Fig. 4 can be classified by determining the positions of  the two 
r ibbon edges of  a after the rotation: Each ribbon edge e = a n q (or e' = a n r) 
may be rotated to be (a) disjoint with q (r), or (b) onto a boundary  edge oft/  
(r), or (c) onto the ribbon edge r / n  q' (r  n r '). Since each of these may occur 
at either r ibbon "edge of a, there is a total of nine possible outcomes, but some 
of these are the equivalent under exchange of ~/and r. If  (a) above occurs at e 
and e', then we refer to that outcome as case (aa). Similarly, we also find cases 
(ab), (ac), (bb), (bc), and (cc). These cases are illustrated in Fig. 4, with case 
(1) equivalent to (aa), (2) to (cc), (3) to (ac), (4) to (ab), (5) to (bc), and (6) 
to (bb). In some of these cases, plaquettes must be added or deleted to maintain 
the integrity of  the ribbon. 
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If e (or e') is rotated disjoint with r/(r),  then a plaquette is added inci- 
dent on e and the old ribbon edge of r / ( r )  [which occurs whenever case 
(a) above is the case]. In case (b), no plaquette is added, but observe that 
a boundary edge becomes a ribbon edge, and vice versa. In case (c), r / ( r )  
must be removed, since there are now three plaquettes incident on the edge 
q' c~r/ (r n r'). Taken together, the length changes of the ribbon in the six 
distinct cases are + 2  in case (1), +1 in case (4), 0 in cases (3) and (6), 
- 1  in case (5), and - 2  in case (2). Incidently, note that every case is 
reversible; cases (1) and (2) and cases (4) and (5) are inverses of each 
other, while cases (3) and (6) are their own inverses. 

A double move can be performed on adjacent plaquettes with the same 
orientation (parallel normal vectors). Adjacent pairs of plaquettes must be 
selected with uniform probability to attempt the move (this can be 
achieved, for example, by selecting a ribbon edge with uniform probabil- 
ity). If  the adjacent plaquettes do not have the same orientation, then the 
move is rejected. Let a~ and a2 be two adjacent plaquettes with the same 
orientation. Suppose that r/ and r/' are the neighbor and second neighbor 
of tr, in the ribbon, and r and r '  are the neighbor and second neighbor of 
a_,. Moreover, let e~ = tr~ c~ r be the ribbon edges between the a; and their 
neighbors ( i=  1, 2). The double move is attempted by translating tr, u a2 
one lattice spacing in the direction, or against the direction, of their normal 
vectors. The fate of the edges el and e2 determines the outcome of the 
attempt, exactly by the same rules applied to the 90 ~ rotation above: Case 
(a) occurs when e~ is moved to a position disjoint with r/, case (b) when 
e t is moved onto a boundary edge of Pl, or (c) onto the ribbon edge r /n  q'. 
The situation with e2 gives the same possible outcomes, with r/ replaced 
by r. (Observe that there is no difference between the cases with tr~ and tr 2 
corner or ordinary plaquettes; the three cases above are independent of 
this.) 

The same arguments used for 90 ~ rotations produce six distinct 
possible outcomes illustrated in Fig. 5. In the same notation, case (1) 
corresponding to case (aa), (2) to (cc), (3) to (ac), (4) to (ab), (5) to (bc), 
and (6) to (bb). If el is moved to a position disjoint with r/ [case (a) 
above],  then an extra plaquette must be added to reconnect the ribbon; 
this is done between the old and new positions of e,,  as illustrated in 
Fig. 5, case (1). If  case (b) is presented, then no plaquette is added, but 
observe that a boundary edge becomes a ribbon edge and vice versa. In 
case (c) there are three plaquettes incident on the edge q c~ q', and r /must  
be deleted to maintain the integrity of the ribbon. Equivalent arguments 
and constructions are valid if e,_ is considered instead. Consequently, the 
six distinct cases in Fig. 5 may increase the length of the ribbon by 2 
[case (1)] or by 1 [case (4)] or leave it unchanged [cases (3) and (6)], 
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Cases (1) and (2) 

D 
Case (3) 

: Od ~7 t 

Cases (4) and (5) 

T'I 

Case (6) 

Fig. 5. The possible outcomes of a double move. 

or decrease the length by 1 [case (5)] or  by 2 [case (2)]. Observe that 
every case is reversible; cases (1) and (2) and cases (4) and (5) are inverses, 
and cases (3) and (6) are their own inverses. 

3. REVERSIB IL ITY  A N D  R E D U C I B I L I T Y  

It is apparent that  the elementary moves described in Section 2 will 
not  be able to untie a ribbon with a knotted axis (the axis of  the ribbon 
is found by connecting the midpoints of  successive ribbon edges), so the 
Markov  chain is reducible. It will be made irreducible by the addition of  
a global move. In order to understand what we need to do to obtain an 
irreducible algorithm, it is necessary to understand the reducibility proper- 
ties of the current algorithm. A second issue, which we discuss first, is 
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reversibility, and the nature of the invariant limit distribution within an 
ergodicity class. We focus on a proof of reversibility for the case x = 1 in 
Eq. (2.3); the implementation of the algorithm for other values of x is 
discussed in Section 4.1. 

3.1. Reversibility 

Implementation of the algorithm is "Metropolis style "~ ~4~; the relative 
weight as a function of the fugacity of a proposed conformation is com- 
puted and accepted with the Metropolis rule. Let R I be the current ribbon 
with length [RI] .  The relative weight of Rl is K IR'I. If the newly proposed 
ribbon has length [R21 , then we accept it with probability K In21-1Rfl 

if IR21 > IR~I and with probability 1 otherwise, as the next state in the 
realization of the Markov chain. The implementation and reversibility 
equations are as follows: 

1. With probability q, attempt a double move by selecting a ribbon 
edge in R t at random. If the two plaquettes incident on this ribbon edge 
have the same orientation, then the move is attempted, otherwise the 
attempt is rejected and R~ is the next state in the Markov chain. If an inter- 
section occurs, or if implementing the move results in a conformation 
which is not a ribbon, then the attempt is rejected, and R~ is the next state 
in the Markov chain. Let R2 be the newly proposed ribbon. If [R1[ t> [R21, 
accept R2 as the new state, otherwise accept R2 as the new state with 
probability g IR21 -IRd.  Therefore 

q {1, if IRlI>/IR21 (3.1) 
Prob{Rl--*R2} = 2  IR~I K IR21-IRII, otherwise 

Since every double move has an inverse by design, detailed balance 
follows by exchanging RI and R 2 in Eq. (3.1): 

1R~I Prob{R, ---, R_,} KIRtl = IR_,I Prob{R2 --* R,} K LR'-s (3.2) 

2. Otherwise, with probability ( 1 - q ) ,  attempt one of the other 
available moves. Select a plaquette in R~ with uniform probability. If the 
plaquette is a corner plaquette, then a corner move is attempted, described 
in 2(a) below, otherwise, a parallel shift or a 90 ~ rotation is attempted, 
described in 2(b). 

2(a). Let m be the total number of possible corner plaquettes which 
can be put between the neighbors of the selected plaquette (m = 3 in Fig. 2). 
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Move the corner plaquettes and reject the move if an intersection occurs. 
Otherwise, ribbon R2 with IR~I= IR2I is the outcome, and 

Prob{Rl --* R2} = (1 - q)/(m IR~I) (3.3) 

Interchanging R~ and R,_ gives Eq. (3.2), since IR~I = [R,_I 

2(b). With probability p attempt a parallel shift move, and with 
probability (1 - p )  attempt a 90 ~ rotation. Since the selected plaquette may 
be shifted in two possible directions, a ribbon R2 is obtained from R~ with 
probability 

Prob{R~---,R2} ( 1 - q ) p { 1  if IR~I>~IR21 (3.4) 
= 2[Rt----~ K IR-'I-IR'I otherwise 

where the possible length changes were considered as with the double 
move. If an overlap occurs in the proposed R2, then the attempt is rejected. 
On the other hand, if a 90 ~ rotation is attempted, then the selected 
plaquette may be rotated about each boundary edge in two possible ways, 
for a total of four possible rotations. Hence R2 is obtained with probability 

P r o b { R ~ R 2 }  ( 1 - q ) ( 1 - p ) { l  if IR~I>~IR21 (3.5) 
- -4 ]R-~ i KIR.,I - I R, I otherwise 

and if an intersection occurs, then the attempt is rejected. If the moves and 
states are reversed in Eq. (3.4) and (3.5), then Eq. (3.2) is recovered, since 
every possible transition was designed to have an inverse move. 

In each of these cases, we recover Eq. (3.2), and so it describes the 
reversibility properties of the algorithm. By summing Eq. (3.2) over R2 the 
invariant limit distribution is nr',,IC', where r',, is the number of ribbons on 
n plaquettes, within an unspecified ergodicity class of the algorithm. In the 
next section we specify the ergodicity classes. 

3.2.  R e d u c i b i l i t y  

Let Ro be a ribbon and implement the Monte Carlo algorithm as set 
out in Section 3.1. If we initialize the algorithm with Ro, then a Markov 
chain with states {R o, R~ ..... Ri .... } is realized. Let Prob"(Ri---, Rj) be the 
probability that Rj will be realized in the chain, after exactly n iterations, 
if the algorithm is initialized at R,.. Let N be the set of all ribbons, and 
define 

#'(Ro) = {R ~ ~ [ Prob"(Ro ---, R) > 0 for n < oo } (3.6) 
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In other words, ~(Ro) is the subset of all ribbons which may be realized 
with positive probability in a Markov chain initialized at Ro. The elements 
of 8(Ro) are the consequents of R o. If ~ ( R o ) = ~ ,  then the algorithm 
realizes an irreducible Markov chain; one also says that the chain is ergodic 
(it is aperiodic). Otherwise the chain is reducible, and it remains to charac- 
terize the "ergodicity classes" ~(Ro). 

If the barycenters of adjacent plaquettes are joined by edges, then we 
find the center polygon of the ribbon. The knot type of the ribbon is defined 
as that of its center polygon. Local transitions as proposed in Section 2.1 
induce local deformations of the center polygon; the center polygon is 
isotopied into the next by elementary moves on the ribbon. These moves 
cannot change the knot type of the center polygon and the local algorithm 
is reducible. Consequently, if R 0 is a ribbon of knot type T, then the 
ergodicity class e(Ro) is a set of ribbons all with knot type T. We shall 
prove that the ergodicity classes are those sets of ribbons with fixed knot 
type of the center polygon. 

Before giving the technical details of the proof characterizing the 
ergodicity classes, we give a sketch outlining the proof. The basic idea is to 
focus on a projection in a plane of a polygon derived from the ribbon. We 
show that Reidermeister moves can be executed on this polygon, using 
moves from the list of local ribbon moves. To do this, one needs to be able 
to create space around the ribbon, and this is accomplished by a process 
of successive subdivision of the ribbon. This is similar in spirit to the proof 
that the BFACF algorithm for polygons in Z 3 has knot types as its ergodic 
classes. 

N o t a t i o n .  Let 0c be one of the canonical unit vectors { _ i, _ j ,  _k}  
in ~3. A plaquette a is normal to ~ if the cross-product of any pair of per- 
pendicular edges of a is parallel or antiparallel to ~. Otherwise, we say that 
a is tangent to ~. An edge in 5 e3 can be represented by the double (x, ~) 
with endpoints x and x + ~. Similarly, a plaquette can be represented by 
the triple (x, ~ ,  ~2), where ~ l ~ 2  and with vertices x, x + ~ ,  x +oc 2, and 
x + ~l + ~2. The plane T~(x) c ~3 is normal to ~ and contains the points x. 
A cut of a ribbon R by T~(x) is the intersection R n T~(x). A section of a 
ribbon R is a connected sequence of plaquettes. A section is in standard 
form if its projection in a plane is a set of edges (containing no plaquettes). 
A section is planar if it is confined to the subspace between the plane 
(including) T~(x) and the plane (excluding) T~(x + ~)(this plane may con- 
tain edges from the section, but not plaquettes); we say that the section is 
planar with respect to T~(x). We also define the following half-spaces: Let 
Z+~ (x) = {z �9 ~3 I z =y  + q~, y �9 T,(x), q >10} be the closed half-space with 
boundary T,(x). Let Z ~ ( x ) = ~ 3 - Z ~ + ( x )  be the open half-space with 
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boundary T~(x). We denote by S + 0~ the image of the set S if it is trans- 
lated by the vector 0~. 

Definit ion.  Let R be a ribbon and let R+=Z+~(x+oOnR and 
R_ =Z~(xnR .  Let ( R + - 0 0  be the image of the set R§ translated by 
- ~ .  If R' = (R § - 0c) w R_ is a ribbon, and if the number of plaquettes of 
R' equals the number of plaquettes in R minus the number of sections in 
R § and R - ,  then R is subdivided by T~(x). 

Observations: 

1. The condition on the number of plaquettes in R' in the above 
definition ensures that only single plaquettes tangent to ~ between the 
planes T~(x) and T~(x + o 0 were contracted to give R', translating all of 
R § by - ~ .  

2. A subdivision R' of a given ribbon R can be constructed as 
follows: Let R+=Z~+(x)nR and R-=Z~( .x )nR.  We can transform 
(R § +.~) u R -  into a ribbon R' by adding single plaquettes to reconnect 
the ribbon edges divided by translating R § 

3. If a sequence of such subdivisions connects a ribbon R to a ribbon 
R', then one says that R' is a subdivision of R. 

4. Observe that every section of a ribbon subdivided by the plane 
T~(x) between T~(x) and T~(x+oO is a single ordinary plaquette with 
ribbon edges in T~(x) and T~(x +00, and that no plaquette normal to 
remains in T~(x) [since Z~+(x) is a closed half-space in item 2 above]. 

5. Let S be a planar section of a ribbon R with respect to T~(x). The 
end edges of S are those ribbon edges of R incident on plaquettes in S and 
R/S. Suppose that the end edges of S are incident with plaquettes r /and 
in R/S. Then r /and r are plaquettes either in Z+(x+oO or in Zs If r/ 
or z are ordinary plaquettes whenever they are in the half-space Z~+(x + oc), 
then S is called a movable planar section. 

Standard Planar Sections. A section S of a ribbon is in 
standard planar form if it is planar with respect to some plane T~(x) and 
if its projection in that plane is a set of edges. Standard planar sections 
have the following properties: 

I. Each standard planar section of length N consists of the end 
plaquettes which are corner plaquettes, and N -  2 internal plaquettes which 
are all ordinary. 

2. 90 ~ rotations may be used to transform a standard planar section 
into any other standard planar section connecting the same end vertices: 
To see this, consider the projected image of the section as a self-avoiding 

822/82/3-4-36 
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walk. If  one can perform BFACF algori thm moves on this projected walk 
by performing 90 ~ rotat ions in the section, then the irreducibility of  the 
B F A C F  algori thm in two dimensions immediately implies the claim ~5" ~6) 
(the elementary moves of this algori thm are illustrated in Fig. 6). This can 
be easily checked: Let a = ( x , ~ , ~ )  be an internal plaquette, and let 
r / = ( x ,  0c/t) and r = ( x + 0 q ,  oc, v) be its adjacent plaquettes in the section. 
Perform two 90 ~ rotat ions on a: first a round the edge (x, 0q) to (x, 0q, 0c2) 
and then around (x+0c2, 0c~) to (x+0c2,0q 0q). I f / ~ = v = ~  2, then r/ and r 
are deleted, giving the type - 2  move in Fig. 6. I f / t  g: ~2 and v 4: 0c2, then 
the type + 2  move in Fig. 6 is found. Otherwise, either/~ =~2 ,  or v =0c 2 in 
which case the type 0 move is obtained. 

3. Any subsection of a s tandard planar  section may  be translated 
normal  to T~,(x) by applying parallel shifts; and if an end plaquette is 
included in the subsection, by doing corner moves. Since each move is 
reversible, any standard section which projects to a self-avoiding walk in 
T~,(x) may be made planar  by using parallel shifts and corner moves. 

k e m m a  3.1.  Let S be a movable  planar  section of a r ibbon R with 
respect to the plane T~(x). Suppose that  S consists of more  than one 
plaquette. If every r ibbon edge of the translated image S + c( is disjoint with 
R/S, except for the end edges, which may  intersect R/S only in it first and 
last plaquettes, then elementary moves can be used to translate S onto its 
translated image S + ~, provided that  corner moves, 90 ~ rotations,  parallel 
shifts, and double moves are included in the list of  available elementary 
moves, generating a new r ibbon with S translated by ~. 

Proof. I f y e  T~(x+ct) is a vertex occupied by S, then y - ~  T~(x) is 
also occupied by S. Let tr be a plaquette in S and let II and r be plaquettes 
incident with ~r and r/' and r '  be second nearest neighbors of a. The strategy 
is to rotate every plaquette a in S tangent to c~, using only vertices occupied 
by tr or by tr + 0c. There are two cases to consider: Any normal  plaquette 
may  be either a corner plaquette or an ordinary plaquette. There are 
several subcases in each case. 

Case (1) .  Suppose that  tr is a normal,  corner plaquette. The sub- 
cases are determined by the orientations and nature of  q and r. Let 

.,.," .." 

- 2  ""  " Y "  

I L J  .... I ........... +2  "---* 0 y '  ..," 
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Fig. 6. The BFACF moves. 
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a = (x, cq, 0~2), t / =  (x, ct I ,/2), and r = (x, 0~ 2, v) Here, /2 and v may  each 
independent ly  take on three values, but  many  of  them are identical  under  
exchange of q and r. Moreover ,  the only case which has /2  = v is when t/ 
and r are normal  to ~. There are four subcases left: (/2, v) equal to 
(a) (~, -0 t ) ,  (b) ( - c t  2, - ~ l ) ,  (c) (ct, - ~ l ) ,  and (d) ( - c t  2, -c~): 

S u b c a s e  ( a ) .  t/' is disjoint  with the edge (x ,~) ,  since there are 
a l ready three plaquet tes  incident  on x. Observe that  x + ct can only be 
incident  on two plaquettes,  since S is a movable  p lanar  section. Perform 
a corner  move of  a to rotate  it to (x, ~, ~2). Then a has become tangent  
to ~. 

S u b c a s e  (b ) .  Perform a double  move on g and one neighbor,  say t/ 
in the direct ion ct. This move introduces two new ord inary  plaquettes  
between t7 and 3, (x, ct, ct2), and between q and I1', bo th  tangent  to ct. If t/ 
is a corner  plaquette,  then the corner  move which rotates  ty from 
( x + c t ,  cq, ~2) to (x, ~, ~l) followed by a second corner  move which takes 
t / f r o m  ( x + ~ ,  ct,, -c t2)  to (x+0t~,  ~, - ~ 2 )  ro ta te  both  g and t / t angen t  to 
ct. On the o ther  hand,  if t / i s  an ord inary  plaquette,  then a corner  move of  
g from ( x + ~ , ~ , , ~ 2 )  to (x, co, ctl) followed by a 90 ~ ro ta t ion  o f t / a r o u n d  
(x +ct, - ~ 2 )  to (x, ~, - ~ 2 )  leaves both  g and t / t angen t  to ~. 

S u b c a s e  (c ) .  This case is dealt  with exactly as in subcase (a). 

S u b c a s e  (d ) .  This case is t reated exactly as in subcase (b). 

Case (2 ) .  Suppose that  a is a normal ,  o rd inary  plaquette.  This case 
has two subcases: Either I / o r  z or  bo th  are normal  to ~, or  nei ther  are. 

S u b c a s e  (a ) .  Suppose either i / o r  ~ or  both  are normal  to ct; without  
loss or  generality,  suppose it is t/. Perform a double  move on t7 and t / a n d  
argue exactly as in case (1), subcase (b). 

S u b c a s e  (b ) .  Nei ther  i / n o r  3 is normal  to ~. Let a = (x, ~1, cc2), and 
suppose that  t / =  (x, 0t I ,/2) and 3 = (x + ~2, ~l ,  v), where/2 and v are +ct. If 
e i ther /2 or  v, or  both,  are equal to ~, suppose without  loss of  generali ty 
that  /2=~ .  Then the vertices (x+c~) and ( x + ~ + c t )  are incident on at 
most  two plaquet tes  (each) by hypothesis,  and either (x+0c2) or 
(x + c~ + eta) is incident on only two plaquettes.  In the first case rotate  a by 
a 90 ~ rotation" tangent  to ~ about  (x, ct2), in t roducing the plaquet te  
(x + ~2, ct, ~ )  if necessary between a and 3, or  deleting 3. In the second 
case, a is ro ta ted  though 90 ~ about  its other  bounda ry  edge (x + c~, ~2) to 
(x + 0~, ~, ~_,). In  bo th  cases a is ro ta ted  tangent  to cc On  the other  hand,  
if both /2  and v equal - c t ,  then S consists of  exactly one plaquette,  and this 
case is not  covered by our  hypothesis  (we will remove these from the 
r ibbon by applying the result in Coro l la ry  3.2 and Lemma 3.3). 
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Consider every plaquette in S normal to ct, and systematically rotate 
each one tangent to ~. Each possible case is covered above, since S has 
length greater than one. Consequently, S is transformed into St, a planar 
section standard with respect to T~(x). Now, S r  has exactly two corner 
plaquettes at its endpoints, and all its internal plaquettes are ordinary. 
Moreover, each vertex covered by Sr is either in S or in S + ~. 

Suppose that a is an internal plaquette tangent to ~ in S + ~ .  By 
remark 2 on standard planar sections, 90 ~ rotations may be used to 
arrange S r  such that a - ~  is an internal plaquette in S t .  If  a is an 
ordinary plaquette, then a parallel shift of a -  ct by 0c will create a as well 
as its tangent neighbors in S + ~ (observe that the neighbors of a must be 
tangent to �9 if a is ordinary). These moves are possible since S +  ~ is inter- 
nally disjoint with R/S by the hypothesis. If  there are no internal plaquettes 
in S +  0q then S has length two, and a single corner move will translate 
it by ~. Consequently, it only remains to rotate the remaining tangent 
plaquettes in S r  to their normal images in S + ~ :  But this is always 
possible, since these cases can be considered as rotating plaquettes from 
normal to tangent by rotating the frame of reference. Thus S has been 
translated to S + 0c. | 

The case analysis in Lemma 3.1 detected the only case where a planar 
section is always movable and consists of exactly one plaquette [say with 
respect to T~(x)]: We refer to this single case as a degenerate section. By 
elimination, one observes that this section has exactly one ordinary 
plaquette (normal to 0c), and has neighboring plaquettes r /and z tangent to 

in the half-space Z~(x). One also observes that any planar section of a 
ribbon R which satisfies the conditions of Lemma 3.1 may be rotated, pla- 
quette by plaquette, to a standard planar section; that is, its image in T~(x) 
will be a self-avoiding walk. 

Corollary 3.2. The only movable planar section with respect to the 
plane T,,(x) which contains exactly one plaquette (x, c%, 0%) is an ordinary 
plaquette normal to ct with neighboring plaquettes r /and r tangent to ~ in 
the half-space Z~(x). 

Degenerate sections can be removed from a ribbon by using 90 ~ rota- 
tions: consequently, every ribbon is equivalent to a ribbon without 
degenerate sections under 90 ~ rotations. One may therefore restrict the 
discussion to ribbons without degenerate sections; we call these ribbons 
free: 

L e m m a  3.3. By applying 90 ~ rotations, a movable planar section 
with respect to the plane T~(x) containing exactly one plaquette can be 
removed from any ribbon. 



MC Algorithm for Lattice Ribbons 1175 

Proof. Let O'=(X, OCl,~2) be the movable planar section; then 
by Corollary 3.2, the neighbors of a are r /=(x ,  0c 2, -0c) and r =  
( x + 0 q ,  = 2 , - ~ ) .  a is an ordinary plaquette, and there are two cases to 
consider: case (I)  when both r /and r are ordinary plaquettes, and case (2) 
when at least one of t /and r is a comer plaquette. 

Case (1). In this case, (x-0q0c2) and ( x + ~ 1 - ~ , ~ 2 )  are ribbon 
edges. Rotate tr by 90 ~ to ( x , ~ , - ~ )  around (x, cq), and then again 
around ( x - c t ,  cq) to (x-c t ,~ l ,c t2) .  This deletes the plaquettes ~/ and r 
from the ribbon. No other vertices other than those initially occupied by r/ 
and r were used. Rename the current neighbors of tr to be 1/and z again. 
If  both are ordinary plaquettes, then case (1) is again encountered, and the 
construction is repeated, again translating a by -ct.  Since the ribbon is 
finite, one must eventually encounter case (2). 

Case (2).  Without loss of generality, suppose that r/is a corner pla- 
quette incident on the second nearest neighbor q ' =  (x, - ~ ,  -~ i ) ,  where 
i =  l, Or 2. As in case (1), perform a 90 ~ rotation of tr around (x, cq) to 
(x, cq, -ct).  This removes I/. If  case (1) or case (2) is again encountered, 
then the constructions are repeated. Since in both cases plaquettes are 
removed from the ribbon and never added, tr must eventually become part 
of a planar section with length greater than one. I 

Hence, our attention will be restricted to free ribbons; by Lemma 3.3, 
there exists a sequence of 90~ rotations between any ribbon and a free ribbon. 
It is now possible to show that any free ribbon may be subdivided in any 
given plane, using elementary local moves from the lists in Section 3.1. 

T h e o r e m  3.4. Let R be any free ribbon, and let R' be obtained by 
subdividing R with respect to the plane T=(x), where x e ~3.  Then there 
exists a sequence of elementary moves which transform R into R', provided 
that corner moves, parallel shifts, 90 ~ rotations, and double moves are 
included in the set of possible elementary moves. 

Proof. Without loss of generality, suppose that T~(x) c~ R v~ f2~. Let 
j be the largest integer such that T~(x +je)c~ R ~ f2~. Suppose R contains 
planar sections with respect to T=(x +jet), and let S be any one such planar 
section. Since R is free and S + cc is disjoint with R/S, S satisfies the hypo- 
thesis of Lemma 3.1, and consequently there exists a sequence of elemen- 
tary moves which will translate S by e onto S + ct. If  any planar sections 
with respect to T~(x +joQ remain, then these also satisfy the hypothesis of 
Lemma 3.1, and they are also translated by e. Continue until none remains, 
then R is subdivided in the plane T~(x +jet). Observe that only plaquettes 
tangent to ct were added at the endpoints of each of the translated sections. 
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If j = 0 ,  then the theorem is proven, so suppose that j>~ 1. Reduce j by 1 
and look for planar sections in R with respect to T=(x +j~). If S is such a 
section, then it satisfies the hypothesis of Lemma 3.1, since R is free and 
since R has been subdivided in T=(x + (j+ 1)0~). In addition, the end edges 
of S + ~ can only be incident on the end plaquettes of R/S. Thus S can be 
translated by 0~. Continue until every planar section with respect to 
T=(x + Jo~) has been translated. Then R has been subdivided in T~(x +jo~). 
If j =  0, then the theorem is proven; otherwise reduce j by 1 and repeat. 
Finally, j = 0. 

Observe that a subdivision of a free ribbon is also free. A free ribbon 
R can be subdivided multiple times in any number of planes, not all 
necessarily with the same orientation. Consequently, a natural consequence 
of Theorem 3.4 is as follows. 

Corollary 3.5. Let R be any free ribbon, and let R' be the ribbon 
obtained by subdividing R multiple times. Then there exists a sequence of 
local elementary moves which includes corner moves, parallel shifts, 
90 ~ rotations, and double moves, which when applied to R, gives R'. In 
addition, R' is a free ribbon. 

If a free ribbon R is subdivided systematically in every plane T=(x) 
which cuts it, and for ~ assuming all the canonical unit vectors, to give a 
free ribbon R', then R' is said to be globally subdivided. By Corollary 3.5, 
every ribbon (not necessarily free) is connected to a globally subdivided 
free ribbon by a sequence of elementary moves. 

By applying the arguments in Lemma 3.1, any planar segment in a 
globally subdivided ribbon can be changed into a standard planar segment, 
all with respect to a plane T=(x). Thus, we can transform any ribbon R into 
a standard ribbon: the image of R in T=(x) under a projection in the 
direction ~ is a set of edges. 

Corollary 3.6. Let R be an arbitrary ribbon. By applying an 
elementary transition from a list which includes corner moves, parallel 
shifts, 90 ~ rotations, and double moves, R can be changed into a standard 
ribbon with respect to any given plane T~(x). 

Canonical Standard R i b b o n s .  Let R be a standard ribbon with 
respect to T~(x). Let ~ R  be the projection of R into T=(x). If e is an edge 
in ~R,  then e is the image (under ~ )  of at least one plaquette in R. The 
number of plaquettes projected to e may be determined by making slight 
changes in ~, and these may contain, in addition to internal (ordinary) 
plaquettes of standard planar sections, also linear connected sections of 
plaquettes (all with the same orientation) vertical to T=(x). Denote these 
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sections as vertical sections. A vertical section consists of two terminal 
plaquettes which are both corner plaquettes, and which are also the ter- 
minal plaquettes of standard planar sections, as well as internal ordinary 
plaquettes. Two vertical sections are adjacent if a terminal (corner) 
plaquette of each forms a standard planar section of length two. In this 
manner, one may consider a standard ribbon to consist of a collection of 
vertical sections glued together by planar sequences of (ordinary) plaquet- 
tes (which may be empty), and which together with the terminal plaquettes 
of the adjacent vertical sections form a standard planar section in R. A ver- 
tical section S is included if it is incident on R/S on opposite sides of S (this 
is well defined, since every plaquette in S has the same orientation), 
otherwise it is excluded. If R is globally subdivided, then S is movable, and 
by Remark 2 on standard planar sections and Lemma 3.1, any excluded 
vertical section S may be translated and be changed into an included 
vertical section. [To see this, argue as follows: Let r /= (x ,~ ,0q)  and 
3 =  (z +k0q 0c, 0c2) be the two plaquettes adjacent to an excluded vertical 
section S. One may assume that r /and ~ have the same orientation; if not, 
then subdivision and translation of S in the direction away from its inci- 
dent plaquettes will introduce two new plaquettes of the same orientation. 
Thus ~ = 0( 2 above. If q has the same orientation as S, then two 90 ~ rota- 
tions (after subdivision if necessary) will introduce a plaquette adjacent to 
S rotated at 90 ~ with S, so one may assume that r/ is rotated 90 ~ with 
respect to S. Thus, the terminal plaquette of S incident on q is of the form 
(x, ~, ~'), where �9 # ~' # ~ .  Consequently, two 90 ~ rotations of q will trans- 
late it to (x +~ ' ,  ~, ~ ) ,  and this is incident on the opposite side of S to 3] 
If every vertical section of a standard ribbon R is included, then R is 
said to be in canonical standard form. Consequently, we have just shown 
that: 

Lemma 3.7. Any standard ribbon R may be put in canonical 
standard form by using elementary transitions from a list that includes 
corner moves, parallel shifts, 90 ~ rotations, and double moves. 

P o l y g o n s  a n d  R i b b o n s .  It may also be arranged that every edge 
e in the image ~ R  of a ribbon in canonical standard form is projected from 
either an included vertical section or from an internal ordinary plaquette 
in a planar standard section of R, using subdivision and pushing planar 
sections onto newly introduced planes perpendicular to T~(x). In such a pro- 
jection, every intersection occurs on vertices, and by indicating the nature 
of the intersections, the projection may be interpreted as that of a polygon. 
Consequently, one may "lift" the projection to either the ribbon or to a 
polygon. BFACF moves in the polygon induce BFACF moves in the pro- 
jection, which in turn induce local moves from our list of available moves 
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in the ribbon. Subdivision of the polygon is possible with BFACF moves, 
and such a subdivision induces a similar subdivision in the ribbon. Note 
that the ribbon has the same knot type as the lifted polygon. A theorem of 
Janse van Rensburg and Whittington (17) implies that by subdivision and by 
BFACF moves, any polygon of knot type T may be changed such that its 
projection is a plane isotopy of a standard projection of a knot of type T 
(for example, that projection listed in the standard knot tables). Moreover, 
if the standard knot projection is pushed onto the lattice, then the projec- 
tion of the polygon may be made identical to it. Intersections in the projec- 
tion t~R may be identified to have overpassing and underpassing sections. 
From underpass to underpass, a projected section is a self-avoiding walk, 
and by using parallel shifts the corresponding section can be made planar. 
Hence, the entire ribbon can be made planar, except for underpasses which 
must avoid overpassing sections. BFACF moves in the polygon lifted from 
the projection of this ribbon induce ribbon moves; the involved section is 
first made planar, and collisions are avoided by parallel shifts normal to 
T~,(x). Consequently, R may be changed into a ribbon with identical pro- 
jection to that of a standard projection r of a polygon of knot type T, 
as discussed above. Taken together, any canonical standard ribbon may be 
changed into a ribbon R such that ~ R  = ~ P r ,  provided that R has knot 
type T. But since any ribbon may be made into a ribbon in canonical 
standard form, one obtains: 

Theorem 3.8. The ergodicity class g(Ro) of the ribbon algorithm 
initialized with ribbon Ro of knot type K(Ro) is 

r = { R e , I l K ( R ) =  K(R0) } 

where K(R) is the knot type of ribbon R. 

Corollary 3.9. The ribbon algorithm is reducible, and its ergodicity 
classes are those sets of ribbons with the same knot type. 

3.3. Irreducibil i ty and Non local Moves 

By Corollary 3.9 it is apparent that moves additional to the lists in 
Section 3.1 are needed to define an irreducible Monte Carlo algorithm on 
the set ~ of ribbons in three dimensions. The simplest remedy is the inclu- 
sion of a "crankshaft" move, as suggested in the case of the BFACF 
moves. (~8) This type of move is illustrated in Fig. 7, and one may imagine 
it as a point reflection of the section of the ribbon through the center of 
mass of the marked ribbon edges. 
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/...' Y 
Fig. 7. A. crankshaft move. This move may also be achieved by reflecting the section 
between the marked ribbon edges through the center of mass of the midpoints of the edges. 

The proposed crankshaft moves, together with subdivisions if neces- 
sary, can be used to "untie" any knotted polygon, and since the ribbon 
algorithm is ergodic if applied to unknotted polygons, the augmented 
algorithm (with added crankshaft moves) is irreducible. It was already 
observed that crankshaft moves may be achieved by performing point 
reflections on sections with end edges which are parallel. Borrowing from 
the literature on the simulation of polygons, this move can be identified as 
a "pivot" move, and may be generalized as follows: With uniform proba- 
bility, select two distinct ribbon edges and find the shorter section of the 
ribbon between these. If the ribbon edges are not parallel, then reject 
the attempt; otherwise, perform a point reflection of the section through 
the center of mass of the selected ribbon edges; this guarantees that the 
ribbon edges are interchanged. If the resulting structure is a ribbon, then 
accept the attempt; otherwise reject it. Since these moves leave the length 
of the ribbon unchanged and are reversible, they do not upset the detailed 
balance equation (3.2) in Section 3.2. Taken together we obtain the 
following result: 

Theorem 3.10. If a list of local moves which includes corner 
moves, parallel shifts, 90 ~ rotations, and double moves applied to a ribbon 
is augmented by the addition of either a crankshaft move or by a pivot, 
then the resulting Monte Carlo algorithm is irreducible. 

4. I M P L E M E N T A T I O N  OF THE  A L G O R I T H M  

The algorithm described in Sections 2 and 3 consists of both local 
moves (which change the geometry and number of plaquettes in a local 
area) and global moves (which change the geometry of potentially large 
segments of the ribbon). In order to implement these moves efficiently in 
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a computer, one must design data structures which may be manipulated 
efficiently if a move is attempted. The basic structure in a ribbon is a 
plaquette, which cannot be described by simply storing a d-dimensional 
array of integer coordinates--the plaquette has an orientation, and its 
adjacency to other plaquettes is through its edges. We therefore encoded 
each plaquette in a structure called a face, which contains the following 
information: 

1. The bottom southwest vertex Vbs w of the plaquette, as a three- 
dimensional integer array. 

2. A character variable Co, which describes the orientation of the 
plaquette: it may take one of three values, XY, YZ, or ZX. 

3. Four equal substructures, one for each edge in the plaquette. Each 
substructure codes the coordinates of the vertices at the ends of an edge. 
We also grouped these into two pairs; the first pair contains the ribbon 
edges of the plaquette, and the second pair the boundary edges. These 
data are redundant, since one may compute them from vbs~, and Co; 
nevertheless, these were helpful in performing geometric checks other than 
self-avoidance in the implementation. 

A structure for storing the ribbon is constructed from faces as a 
contiguously allocated, unordered, doubly linked list of pointers called a 
ribbon. Each pointer in the list is the address of a face structure, and points 
to that location in memory which stores the structure of a particular face. 
In order to keep track of the sequence of plaquettes in the ribbon, the 
structure face is made doubly self-referential; two pointers are added to it 
which point to the structure face itself. One pointer gives the address of the 
next plaquette in the ribbon, and the other points to the previous plaquette 
in the ribbon. We refer to these as the forward and backward pointers, 
respectively. Since the ribbon is closed, each plaquette has a forward and 
a backward pointer. 

The ribbon is also self-avoiding, and we used hash-coding ~'9~ with 
linear probing in order to check self-avoidance during an attempted move. 
This is a particularly useful technique. Most queries and operations in the 
hash-table may be done in O( 1 ) CPU time, provided that there are not too 
many collisions in the hash-table. We simply hashed all the vertices in the 
lattice which were occupied by the ribbon, and these were updated every 
time a move was accepted by the algorithm. 

The basic operations on our data structures involved the following 
actions: (1) selecting an edge or a plaquette with uniform probability 
from the ribbon, (2) changing the orientation of a plaquette, (3) inserting 



MC Algorithm for Lattice Ribbons 1181 

one or two new plaquettes into the ribbon, and (4) removing one or two 
plaquettes from the ribbon. The ribbon changes length as the algorithm is 
applied, so we used dynamically allocated arrays: inserting new data results 
in the allocation of new memory, and removing data results in the release 
of previously allocated memory. The advantage is that we do not have to 
predict a maximum length before a run and risk writing outside an array. 
Selecting a plaquette with uniform probability is easily achieved by choos- 
ing a pointer in the ribbon structure with uniform probability. Similarly, a 
ribbon edge may be selected with uniform probability by first selecting a 
plaquette and then selecting one of its ribbon edges with uniform probabil- 
ity. Elementary transitions are proposed and then subjected to three tests: 
the newly proposed ribbon must be self-avoiding, have no more than three 
plaquettes incident on the same vertex, and be accepted with a Metropolis- 
style implementation. All these tests can be done locally for local moves; in 
the case of nonlocal moves, one simply checks around the pivot points for 
violations of self-avoidance. 

4.1. Implementing Local Elementary Transitions 

The local moves are all combinations of the following operations: 

1. Change the position and orientation of a plaquette. In this case 
one simply updates the data structures which code the relevant informa- 
tion. These are the hash-table and the structure face. 

2. Remove a plaquette. The corresponding structure face which 
coded the plaquette is freed, and the neighboring plaquettes must have 
their forward and backward pointers updated. In addition, we remove the 
pointer which points to the plaquette from the ribbon structure. In addi- 
tion, we remove the vertices of the plaquette from the hash-table. The 
length of the ribbon is decreased by 1. 

3. Insert a new plaquette. Here we add a pointer to the ribbon 
structure, allocate memory for a face structur to code the position, orienta- 
tion, and forward and backward pointers of the new plaquette, and add its 
vertices to the.hash-table. The length of the ribbon is increased by 1. 

The transition probability from a ribbon R~ to a ribbon R 2 via an 
elementary move was computed in Section 3 as 

Prob{R~ --+ R2} = A(~ ' )  (1 
IRll K IR:I- IRll 

if IRII ~ IRe[ 
(4.1) 

otherwise 
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where A(J / )  is a function of the type of move ~/' attempted. We verified 
that (4.1) implies the detailed balance condition 

n(R~) Prob{R,--* R2} = rc (R2)Prob{Rz-R,}  (4.2) 

for all ribbons R~, R2, where the invariant limit distribution is given by 

K IRI IRI 
n(R) (4.3) 

GI(K) 

where G~(K) normalizes n(R) and is the generating function of the ribbons. 
We define the x-generating function as 

G..(K) = ~ K IRI IRI ~ (4.4) 
R 

In order to sample from G,.(K) we introduce two Monte Carlo filters. The 
first filter is defined by 

IRll 
Pl--IRjI+IR2[ 

That is, if R 2 is obtained from R~ by an elementary move, then reject the 
move with probability 1 - P l .  If the move is not rejected, then it has passed 
through the first filter. The second filter is then encountered, and it is deter- 
mined by 

P 2  = 

IRzI" KIR, F_IR, I if IR21> IR~I 
I R , I ~ +  IR21 " 

IR_,I ~ 
otherwise 

I R , I ~ +  IR21 ~ 

(4.5) 

The move is rejected with probability 1 - P 2 ,  otherwise it passes through 
this filter as well. The probability for passing through both filters is thus 
PtP2 (provided that R2 is a ribbon), and this is given by 

( B( Rt , Rz) IRzI" 
Prob{R, ---, R2} = A(J[)  (B(R~, Rz) IR~_I ~ g ~R-'~ -~R,~ 

if [R,]/>[Rz[ 

otherwise 

(4.6) 
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where 

B(RI, R2) = B(R2, R1) = 
I I 

IR,I + IR21 I R , V +  IR21 ~ 
(4.7) 

The detailed balance derived from (4.6) implies an invariant limit distribu- 
tion given by 

K IRI IRV re(R) (4.8) 
G~(K) 

or we simply say that sampling is from G,.(K). The parameter x is an input 
parameter in the algorithm, and we may fix it to suit our purposes in any 
simulation. 

4.2. I m p l e m e n t a t i o n  of Global  M o v e s  

Global moves on segments of a ribbon may come in a wide variety 
of possibilities determined by the elements of the octahedral group, t19~ 
We limit outselves here to one of these, called an inversion, which is a 
point reflection of a segment (of a ribbon) though the center of mass of 
two "pivots" which were picked subject to some constraints (which we 
will explain later). Other types of moves may be implemented in a 
similar manner. The pivots which we choose in a ribbon may either be 
edges or plaquettes; in the description of global moves in Section 3 we 
only used edges as pivots, but that is now generalized to include pla- 
quettes as well. 

A global move is performed by first selecting two plaquettes (Pl and 
p_,) in the ribbon with uniform probability. If these are neighbors, then 
we do the null move; otherwise the plaquettes separate the ribbon into 
two segments. A global move is attempted on the shorter of the two. In 
addition, we find those ribbon edges incident on the selected plaquettes 
and shared with the shorter segment of the ribbon; call these el and e2. 
If p~ and P2 have the same orientation, then an inversion of the shorter 
ribbon segment through their center of mass may be attempted. If the 
resulting object is a ribbon, then the move is accepted. On the other 
hand, if the edges e~ and e_, may be attempted, and if the resulting 
object is a ribbon, then the move is accepted. Implementation of these 
cases is as follows: 

1. If p~ and p,_ have different orientations and e 1 and e 2 are per- 
pendicular, then no global move is possible, and we reject the attempt. 
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2. If p~ and P2 are oriented the same way, but el and e2 are per- 
pendicular, then an inversion through the center of mass of Pt and P2 is 
attempted. 

3. Ifpl  and P2 are differently oriented, but e~ and e2 are parallel, then 
an inversion through the center of mass of el and e2 is attempted. 

4. Otherwise, if both p~ and P2 have the same orientation, and el and 
e2 are parallel, then we may attempt either; they are equivalent. 

Let the shortest piece of the ribbon be the ordered sequence {pi}"'__+~ ~ 
of plaquettes, where Po and p,,, + ~ are the plaquettes chosen uniformly from 
all the plaquettes. Let vj(i) be the position vector of the ith vertex of the 
plaquette pj. Moreover, let the position vectors of the midpoints of the 
pivots (either the plaquettes or edges described in the two cases above) be 
w~ and w2. Then the reflected images though the center of mass of the 
pivots of the position vectors of the vertices are 

v~ . ( i )=wl+w2-v j ( i ) ,  where i = 1  ..... m; j = l  ..... 4 (4.9) 

This move exchanges the order of the plaquettes in the shorter segment of 
the ribbon, and the pointers at P0 and Pm+~ must be updated if it is 
successful. In order to check effectively self-avoidance, we used a scratch 
hash-table. We read the vertices of the ribbon, starting at the pivots and 
alternating between them, into the scratch hash-table. If an intersection is 
encountered, then the move is rejected, and the scratch hash-table is 
cleared. Otherwise, the whole ribbon is hashed into the scratch hash-table 
and we interchange the scratch hash-table with the original hash-table, 
which is cleared instead. The pointers in the ribbon structure are updated 
if the move is successful, to account for the reversal in the order of the 
plaquettes in the shorter segment. 

5. NUMERICAL  TESTING AND RESULTS 

The data structures described in Section 4 are conveniently implemen- 
ted in C. The algorithm was coded and set of initial runs was performed 
to determine the numerical properties of the algorithm. Initial bias was 
dealt with typically by discarding the first T iterations in any simulation, 
where T is large and dependent on the fugacity K and the input param- 
eter q. A magnitude for T may be guessed by computing the exponential 
autocorrelation time reap(A, K) for various global metric properties A of 
the ribbon and for various values of K. If r * ( K ) = m a x  ~(rexp(A, K)), then 
T was taken as 10z*(K)(and the maximum over A is taken over the limited 



MC Algorithm for Lattice Ribbons 1185 

number of properties we computed). Our runs were initialized by a planar 
ring of plaquettes, and we sampled once every 5 • 10 4 iterations. We 
selected q in Eq. (3.1) equal to 1/4, which implies that once every four 
attempts a double move is proposed, and p was put equal to 1/2 in Eq. (3.4), 
which means that parallel shifts and 90 ~ rotations were selected uniformly 
if an ordinary plaquette is chosen. Nonlocai moves were performed ran- 
domly on average about once every (n)/4 moves. The parameter x in the 
generating function was put equal to 3 by tuning it in Eq. (4.5). This will 
bias the simulation to slightly higher values of n. 

5.1.  A u t o c o r r e l a t i o n s  

Expected values of the observables of ribbons are estimated by taking 
averages over realizations of Markov chains in the space of ribbons. These 
Markov chains are correlated, and statistical errors may be estimated for 
the averages only if the autocorrelation times of the observables under 
question are known. The autocorrelation time of an observable A may be 
estimated by using a natural estimator (2~ for the integrated autocorrelation 
time over a realized Markov chain of length M: 

I M-~ ( 1 M--I'M ) 
(Ai--(A)  )(A~+H-(A)) r~.t(A) = ~  y'  CAJ(O) M_]t  [ i = |  

t = - - ( M - -  1 ) 

(5.1) 

where ( A )  is the sample (or grand canonical) mean of the observable A 
which is measured after each iteration. In Eq. (5.1) we defined CAA(0) = 
( A z) _ ( A )  -~. The estimated integrated autocorrelation times may be used 
to compute an approximation to the statistical error in the Monte Carlo 
averages ( A )  by using the asymptotic formula 

tr-"(A) 1 [2ri.t(A)] CAA(0) (5.2) 

In other words, the variance o'2(A) of ( A )  is a factor 2Zint(A ) larger than 
it would be if, the realized sequence of observables Ai were statistically 
independent. 

The integrated autocorrelation times for the number of plaquettes n 
and for the square radius of gyration S 2 of a ribbon (defined by locating 
unit masses at vertices in the ribbon) were estimated using Eq. (5.1). We 
list the results in Table I, where rint(A ) for A = n  and A = S  2 were com- 
puted by running the algorithm at a variety of values for the fugacity K. 
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Table I. Measured Integrated Autocorrelation Times 

Run length 
( cycles ) K (/1 ) Z'int( n ) ( S 2 > l'int(S2) 

1 x 109 0.2255 69 ___2 13__+2 21.0-1- 1.0 1 2 + 2  
l x l 0 9  0.2260 7 7 + 3  1 7 + 2  24.0+1.3 1 6 + 3  
2• 0.2265 8 4 + 4  2 2 + 4  26.8+1.6 2 0 + 4  
3 x 109 0.2275 97 + 3 30 +__ 4 32.1 __+ 1.6 28 ___ 4 
5• 0.2280 1 1 0 + 4  4 2 + 8  37.1-t-1.9 39___7 
8x109 0.2285 127_+5 62-t-14 44.7_+2.1 5 8 + 1 4  

10x l09  0.2290 183+13 183-+39 71.0-+7.0 179_+38 
15 x 109 0.2295 252 • 22 303 4- 75 104.6 4- 11.1 279 -+ 69 

It is not surprising that ~'int increases with K, and it seems to grow 
indefinitely as K approaches its critical value at Kc = p-~.  This is a typical 
feature of grand canonical Monte Carlo stochastic processes in the vicinity 
of a critical point. In particular, as K ~ Kc, we argue like Caracciolo and 
Sokal t21) and conjecture the following scaling behavior for the integrated 
autocorrelation times: 

r~.,(A) ~ ( v ) ~  (5.3) 

where PA is a critical exponent (describing the dynamics of the Monte 
Carlo process) which may be dependent on the observable A. The 
integrated autocorrelation time is related to statistical errors in averages by 
Eq. (5.2), so the rate of growth in (5.3) is a crucial factor in determining 
the statistical efficiency of the algorithm. A log-log plot of Tint(A) against 
( n )  is presented in Fig. 8, and the exponents were estimated by a two- 
parameter linear least squares fit: 

p,, = 2.51 _ 0.08 

ps2 = 2.53 _ 0.09 
(5.4) 

The local moves of the ribbon algorithm are analogous to moves in 
the BFACF algorithm for self-avoiding walks. In fact, the median of the 
ribbon undergoes changes which are BFACF-like, and the relaxation of a 
ribbon under the local moves will therefore be very similar to that of a 
walk undergoing BFACF moves. It is known that the exponential 
autocorrelation time of the BFACF algorithm is infinite for all values of 
the fugacity greater than 0, t22) and an argument similar to the argument 
in ref. 22 shows that the local ribbon algorithm also has an infinite 
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Fig. 8. Log-log plot of the autocorrelation time as a function of the plaquette fugacity K. 
The displayed data are for the length n of the ribbon (squares) and for the mean-squared 
radius of gyration (S 2) (triangles). 

exponential autocorrelation time. The integrated autocorrelation time of 
the BFACF algorithm appears to grow as 

"tint(n) ~ ( n )  4v ( 5 . 5 )  

where v is the metric exponent of the walksJ TM The same argument implies 
that (5.5) should be true for ribbons as well, and we expect v to have the 
same value for ribbons. In three dimensions, the occurrence of tight 
pseudoknots in the ribbon may increase the integrated autocorrelation 
times, perhaps even affecting the exponent in (5.5). The theoretical 
minimum in value of the dynamical exponent p ,  is 2, from a random walk 
argumentJ 24) Our result of p,, ~ 2.5 is quite close to 4v ~ 2.4. It is not clear 
whether the global moves affect the value of the exponent p , ;  empirical 
evidence in self-avoiding walk studies suggests a decrease of a factor of 
5-10 in integrated autocorrelation times. <25) These moves are crucial for 
ergodicity for closed ribbons, but also affect the dynamical behavior of the 
algorithm in a positive manner. 

5.3. Est imat ion  of p and o 

Concatenation arguments may be used to prove a superadditive 
inequality for the number of closed ribbons: a direct result is that 
r .  = p"+~ and, in analogy with polygons, it is reasonable to expect that 

r . ~ n ~ - 3 p "  (5.6) 

822/82/3-4-37 
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Fig. 9. Plot of (n)~ -I versus I/K for K=3. In this analysis the intercept with the x axis 
gives p, while the estimate of e can be easily extracted from the slope of the fitted straight line. 

p is the growth constant  of  both  open and closed ribbons, and may  be 
measured numerically through application of our  algorithm. Theoretical  
bounds on p were give in Section 2 : 4  ~< p ~< 9. 

The assumption (5.6) for r,, allows us to compute  a scaling form for 
the generating function G~(K) by simply substituting (5.6) into (2.3) and 
approximat ing the sum by an integral. At K c, the generating function is 
singular, and its singular part  diverges as K approaches  Kc( = l/p) as 

F ( K + ~ - - 2 )  
G,~(K) log(Kc/K),~+~_2 (5.7) 

This estimate implies that  the average number  of  plaquettes in the r ibbon 
at K behaves like 

K(tx - 2 + x)p  
(n)~ (5.8) 

1 - p K  

which is a simple pole in the K plane, and we should be able to compute  both 
p and ~ by comparing this to our data. Consequently, we at tempted a grand- 
canonical least-squares fit by plotting 1/(n),r against 1/K (see Fig. 9). 

The data  appear  to be well described by a linear relation. A weighted 
least squares fit using (5.8) gives 

p = 4.33 ___ 0.20 
(5.9) 

ct = 0.36__ 0.14 
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again with 95% confidence intervals propagated from the confidence 
intervals in the data (which we estimate from the fluctuations between 
independent runs). The estimate of p is consistent with the bounds 
4 ~< p ~< 9, and closer to the lower bound, and ct is found to be within two 
standard deviations from its polygon value. The large confidence interval 
on 0c indicates strong corrections to scaling. 

5.4.  E s t i m a t i o n  of  v 

Let S'-(R) be the square radius of gyration of the ribbon R. The 
ensemble average (S2(R))  is expected to scale as 

( S ' - ) . ~ n  z" (5.10) 

as the number of plaquettes n tends to infinity, and where v is a universal 
scaling exponent called the metric exponent. The asymptotic behavior in 
(5.10) can be written as an equality if hierarchies of confluent and analytic 
corrections are added, usually in the following way: 

( $ 2 ) , ,  = Bn2V(1 +bn -'J + . . .)  (5.11) 

v may be estimated from data collected over realizations of ribbons for 
several values of K (in different runs). Let Nr(n)  be the number of ribbons 
of length n realized in a run with fugacity K. Let (S2 (K) ) ,  be the mean 
square radius of gyration over this sample. Then over all the runs (at 
various values of K) we compute 

( S 2)  . _ Y'.x N x ( n ) {  S2(K) ) n (5.12) 
~ r  NK(n) 

which is a weighted average over the averages from the individual runs: the 
weights are proportional to the sample sizes. To compute v we assume the 
scaling form 

( S 2 ) n  = Bn2V(1 + Cn -'~) (5.13) 

ignoring higher order corrections. A four-parameter fit should produce the 
exponents but is numerically difficult and uncertain. We therefore fix A at 
its field theory value tS) of 0.475 instead and then do a three-parameter fit. 
The fit becomes linear if we take logs and expand the last term in Eq. (5.13) 
(see Fig. 10): 

l o g ( S 2 ) ,  = log B + 2v log n + Cn-a  (5.14) 
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Fig. 10. Log-log plot of the mean-squared radius of gyration ( S  2) as a function of the 
length n of the ribbon. 

A linear least squares fit gives 

v =0.591 +0.004 (5.15) 

a value which, within the error bars, is close to previous estimates of v for 
the self-avoiding walk in d =  3. Li eta/.  c26) found 0.5877 +_ 0.0006 using the 
pivot algorithm for self-avoiding walks, and a series analysis by Guttmann 
gives 0.592_+0.002, (27) while Rapaport found 0.592+0.004. ~281 The field 
theory estimate is 0.588_ 0.002. (8) 

5.5. Entanglement Properties of the Ribbon 

The entanglement complexity of the ribbon may be characterized by 
entanglement properties of the boundary curves, including linking, knot- 
ting, and writhing. The entanglement complexity of polygons and self- 
avoiding walks has been studied with reference to knotting, linking, and 
writhing both by numerical means ~29-35~ and analytic meansJ 3~ 35-37" 2" 38) 
The polygons or walks were unconstrained in these studies, or confined to 
restricted spacesJ 35,39) In the ribbon model we may view the boundary 
curve of the ribbon as one polygon (nonorientable ribbon) or two 
polygons (orientable ribbon) naturally constrained to model the properties 
of double-stranded polymers. The entanglement complexity of these 
polygons may be studied by considering linking between them in an 
oriented ribbon, or the knotting if the ribbon is not oriented. Lastly, the 
writhe of these polygons is a natural "geometric" measure of complexity, as 
opposed to the topological measures such as linking and knotting. 
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The Link Probability of Boundary Components. I f  a ribbon is 
orientable, then double twists about its axis will l ink its boundary curves. 
If the midline of the ribbon is unknotted, then the links are all (2,k)-torus 
links and these may be characterized by computing their linking number. 
This is done as follows: Suppose that an orientable ribbon R has boundary 
curves C~ and C2. Orient these boundary curves in parallel, and consider 
their image projected onto a plane whose normal has irrational direction 
cosines. Since no vertex in either C~ or C2 (with integer coordinates) will 
project onto images of edges or vertices, all double points in the projec- 
tion will be transverse and we may indicate overpasses and underpasses 
with due reference to the orientation as in Fig. 11. These are the signed 
crossings. 

The sum over the signed crossings between the boundary curves is the 
linking number or Gaussian invariant of the link, indicated by Lk(C~, C2). 
The curves C~ and C 2 are homologically linked if and only if their linking 
number is nonzero. (4~ This is an invariant property of the link, since it 
does not change under ambient isotopy or under interchanging C~ and C2. 
Reversing orientation on one boundary curve will change its sign. Ribbons 
with midlines which are nontrivial knots also admit homologically linked 
boundary curves, and this is also detected by computing the Gaussian 
invariant of the link, exactly as above. In these cases it is possible that 
topologically linked curves may not be homologically linked. We expect 
these cases to be rare for short ribbons, since the knotting probability is so 
low in that regime (we expect this since short polygons are known to have 
a very low know probability133)). 

The linking numbers of the boundary curves of the orientable ribbons 
were computed and collected as a function of the number of plaquettes n 
in the ribbon. These are plotted in Fig. 12; we plot the probability of 
homological linking (nonzero linking number) as a function of 1/v/~. The 
relationship turn out to be linear, and a least squares analysis gives slope 
-2.71 and intercept 1.00. In other words, the probability of linked boundary 

+ 
�9 > 

Fig. 11. Signed crossings determined by a right-hand rule. 
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curves increases to 1 as an inverse square root of the length of the ribbon. 
The probability that the boundary curves are not linked is inversely 
proportional to the square root of n. Nonrigorously, this observation may 
be explained by imagining homological linking to be the result of double 
twists in the ribbon. Since these can be left- or right-handed, an assumption 
of independence will give the square root law. The data in Fig. 12 suggest 
near independence of the twists. The probability of linking between the 
boundary components of the ribbon is much higher than the linking 
between polygons constrained inside a b o x ,  {35) and thus two polygons 
which are constrained to be the boundary curves of a ribbon are much 
more likely to be linked compared to polygons constrained by a confinging 
geometry. 

The distribution of linking numbers with n is plotted in Fig. 13. If n 
is small, then a large proportion of ribbons have unlinked boundary com- 
ponents, but this fraction decreases rapidly with increasing n. The fraction 
of ribbons with boundaries which are linked with linking number equal to 
1 or 2 increases rapidly with n, and soon overtakes the fraction of unlinked 
boundary curves. Asymptotically, these curves all tend to zero, as ribbons 
with higher linking number become feasible with increasing n. 

Writhe of  the Ribbon. The writhe of a curve is the mean of the 
summed signed crossings over all the oriented regular projections of the 
curve into the plane. In any oriented regular projection, double points are 
transverse (as in Fig. 11 ). Thus, to compute the writhe of a curve, an average 
must be taken over all the possible projections of the curve, summing the 

0.9 

0.85 

E o 

r l  0.8 

0.75 

0.7 t I i i i 
0.O2 0.O4 0.06 0.06 0 . I  

t/4~-n 

Fig. 12. The homological linking probability for the two boundaries of oriented ribbons as 
a function of I/x/~, where n is the number of plaquettes in the ribbon. 
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Fig. 13. Plot of distributions of occurrences of oriented ribbons as a function of their length 
n, normalized by the total number of occurrences, for three different linking numbers, L k  = 0 

(diamonds), L k =  1 (plusses), and L k =  2 (squares). 

signs on the crossings in each. (l~ This procedure is greatly simplified when 
polygons in the cubic lattice are considered: A theorem of Lacher and 
Sumners ~4~) states that the writhe of a polygon in the cubic lattice is the 
average of the linking numbers of the polygon with four of its pushoffs 
(over small distances) into nonantipodal octants. Writhe is a geometric 
property of a curve which measures supercoiling. The mean of the absolute 
value of the writhe ( I Wrl ) is not zero, and this is the quality that we will 
study. 

The mean absolute writhe of a polygon scales with the length n as 

<lWrl > ~ nr (5.16) 

where it is known that ~ >/0.5. (3~ Numerically, ff is close to 0.5. If we 
replace the polygon by the boundary components of the ribbon, then we 
expect similar behavior. In addition, we expect the mean absolute writhe to 
depend on the linking number of the boundary curves, and we analized our 
data in this respect. Figure 14 gives a log-log plot of ( I Wr[ ) against n for 
linking numbers 0,I, and 2. Increasing linking number also increases writhe 
for any fixed n, but the curves seem to be asymptotic to the curve with 
linking number 0. The data of the curves corresponding to linking numbers 
0 and 1 are well described by a linear fit, and we obtain ~ = 0.54 ___ 0.02 for 
linking number 0 and ( = 0.48 _ 0.02 for linking number 1 (95% confidence 
intervals). These values are close to the polygon value, (3~ seemingly 
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Fig. 14. Log-log plots of the man of the absolute value of the write of the boundary curves 
of oriented ribbons as a function of the length of the ribbon. The three curves correspond to 
the cases in which the boundary curves have linking number Lk=O (diamonds), Lk= I 
(squares), and Lk= 2 (triangles). 

independent of  linking number. The ribbon behaves essentially like a 
polygon, its writhe being determined by its polygon-like backbone. 

Knot Probability for the Boundary of the Nonorientable 
Ribbon.  A unoriented ribbon has one boundary  curve which can be 
knotted. If  the midline of  the ribbon is unknotted,  then the boundary  curve 
may be a (2, k)-torus knot, and if the midline is a knot K, then the bound- 
ary will be a satellite knot  of  K. Unconstrained polygons, in constrast, may  
admit any knot type. The knot type of a polygon may be detected by com- 
puting the Alexander polynomial A(t) at t = - - 1 .  If  z /(--1): / :  1, then the 
polygon is a knot. There exist examples of  knots with / f ( - 1 ) =  1 but the 
simplest example has ten crossings, and such knots are rare for short 
polygons. ~33) We may therefore safely assume that the polygon is an unknot  
if A ( - 1 ) =  1. 

The probability that a polygon is an unknot  goes to zero exponen- 
tially fast with increasing length (2" 381: 

P~ = e -~~ + ~ (5.17) 

for some positive constant ~o- This result is also true when the polygon is 
confined to a slab. ~4z) While we expect (5.17) to be the asymptotic behavior 
of  P~ a different argument involving double twists in the ribbon and a 
coin tossing argument, similar to the argument which produced Fig. 12, 
indicate that P~ 1--B/.v/-n for small values of  n. This behavior will 
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Fig. 15. Plot of P~ for the boundary curve of unoriented ribbons as a function of the 
length I/v"n of the curve. The line is a least square fit. 

eventually be overtaken by the exponential behavior in (5.17). In our situa- 
tion, we are at sufficiently small values of n to expect the square-root 
behavior, rather than the exponential behavior. This expectation is realized 
in Fig. 15. The straight line shown is a linear least squares fit; we found 
B ~  5.67. This behavior will eventually break down completely as (5.17) 
becomes the dominant behavior. In the regime in Fig. 15 we expect to see 
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Fig. 16. Relative fractions of three different knot types in the boundary curves of unoriented 
ribbons as a function of their size n. The three sets of data correspond to the unknot 
(diamonds), trefoil (plusses), and knots of type 51 (squares). 
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mostly (2, k)-torus knots, and we plot the relative fractions of these against 
n in Fig. 16. The unknot peaks at small n and then rapidly decreases with 
increasing n, while nontrivial knots increase. The fraction of trefoils peaks 
at n roughly equal to 100, and after that it declines, while the fraction of 
knots of type 5, increases to peak around 250. These (2, k)-torus knots are 
the results of double twists in the ribbon (plus one single twist), which we 
assume to be independent in determining the square-root behavior visible 
in Fig. 15. The arguments which realize the exponential behavior in (5.17) 
are based upon the occurrence of satellites of nontrivial knots in the 
boundary of the ribbon, and in particular the satellites of compound knots. 
In the large-n limit these are the knots which will dominate, but it seems 
that our data are far from that regime. 

6. CONCLUSIONS 

Polymers (such as DNA and RNA) can exist in duplex forms in which 
one polymer chain twists around another chain, forming structures which 
are locally helical. Standard models for linear polymers, such as the self- 
avoiding walk, cannot describe the local degree of freedom associated with 
this twist. The interaction of the two strands leads to an additional entropy 
contribution. Ribbon models have been used (4) to describe this type of 
structure. In this paper we have considered a modification of such models 
in which the ribbon lies on a lattice and can be regarded as a sequence of 
plaquettes, with some conditions describing self-avoidance and ensuring 
that the ribbon is a manifold. The lattice model has several advantages. 
The self-avoidance inherent in a lattice ribbon implies that the ribbon can- 
not be indefinitely twisted, and this mimics the behavior of real molecules, 
determined by constraints such as fixed bond lengths and angles and inter 
monomer forces. 

It is relatively easy to establish some results about the asymptotic 
behavior using combinatorial methods. For instance, one can prove that 
the growth constant exists (using concatenation arguments) and lies 
between 4 and 9. ~71 In addition, one can use integer arithmetic in computer 
calculations, which results in efficient data structures such as hash-tables, 
linked lists, etc. 

We have described a Monte Carlo algorithm which samples along a 
realization of a Markov chain defined on the set of closed ribbons. The 
algorithm consists of two types of moves, one of which is a collection of 
local moves (involving only a few contiguous plaquettes) and the other of 
which is a global move, reminiscent of the pivot algorithm for walks and 
polygons. If local moves only are allowed, the Markov chain is reducible, 
and the ergodic classes are the knot types of the center polygon of the 
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ribbon. This will allow future calculations on ribbons with fixed knot type 
(of the center polygon) which will be interesting both mathematically and 
as a model of double-stranded polymers with fixed topological constraints. 
If global moves are also allowed, the Markov chain becomes irreducible. 
This is the case for the numerical work reported in this paper. The 
sampling is uniform for ribbons with each fixed number of plaquettes, and 
is a modified exponential distribution [see (4.8) and Section 3] in the 
number of plaquettes. Global moves can change the knot type of the center 
polygon, the orientability of the ribbon, and properties such as the writhe. 
Local moves are efficient at changing twist and linking number, but make 
only small changes in writhe. 

We have investigated the efficiency of the algorithm by estimating 
numerically the exponent characterizing the decay of the autocorrelations. 
Our value of 2.5 is close to the expected best value of 4v = 2.35 .... so the 
algorithm is efficient. The global moves are a key contributor to this 
efficiency, but local moves are also important for local properties. 

We find a value of the metric exponent v which is close to that of a 
self-avoiding polygon. Collapsing the ribbon onto its center polygon gives 
a polygon (on a decorated cubic lattice), so that one expects the exponents 
to be the same. We have estimated the growth constant, and its value is 
quite close to the lower bound of 4. We have also shown that the expected 
value of the absolute value of the writhe increases like n r with r being 
about 1/2. For nonorientable closed ribbons we have computed the knot 
probability of the boundary, and find that this goes to unity exponentially 
rapidly as the length of the boundary increases. 

In a separate paper we shall present a proof of a pattern theorem for 
ribbons. Several results follow immediately from his. We show there that 
the knot probability goes to unity exponentially rapidly, and also that the 
expectations of the absolute values of the linking number, twist, and writhe 
increase at least as rapidly as x/~. 
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